If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9-6x^2=0
a = -6; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-6)·9
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*-6}=\frac{0-6\sqrt{6}}{-12} =-\frac{6\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*-6}=\frac{0+6\sqrt{6}}{-12} =\frac{6\sqrt{6}}{-12} =\frac{\sqrt{6}}{-2} $
| a+3+a=17 | | 3b-7=35 | | 5*25-(2*25-89)=x | | f+15=6f | | X/3+5=15-x/2 | | 24=4+5f | | x+3/8=16 | | -5(3x+4)-3=-4(x+1)+5 | | 9e=3=-9e-3 | | 8m/11=16 | | 2.5+10y=3 | | (x-9)×4=100 | | 5x+12+x=180° | | 8a+7=9 | | 5-3x=18-5x | | 6p+7=8 | | X^3-6x+32=0 | | 10^x+10^x-1=0.11 | | 14=12+3y | | 13=12+3y | | 2^2x-5(2)^x+4=0 | | 3x-(2x-2)/9=3 | | -5u2+13u-8=0 | | 3x-2x-2/9=3 | | 10-1=3x | | 7+3x=5x+2 | | -5=x+3-5 | | 5x-1=-x | | F(x)=-3x²+4x | | -5x-5=-2x | | 21/30=77/11x+11 | | 21/30=77+11x/11 |